Differential dye coupling reveals lateral giant escape circuit in crayfish
- PMID: 14515237
- DOI: 10.1002/cne.10802
Differential dye coupling reveals lateral giant escape circuit in crayfish
Abstract
The lateral giant (LG) escape circuit of crayfish mediates a coordinated escape triggered by strong attack to the abdomen. The LG circuit is one of the best understood of small systems, but models of the circuit have mostly been limited to simple ball-and-stick representations, which ignore anatomical details of contacts between circuit elements. Many of the these contacts are electrical; here we use differential dye coupling, a technique which could help reveal connection patterns in many neural circuits, to reveal in detail the circuit within the terminal abdominal ganglion. Sensory input from the tailfan forms a somatotopic map on the projecting LG dendrites, which together with interafferent coupling mediates a lateral excitatory network that selectively amplifies strong, phasic, converging input to LG. Mechanosensory interneurons contact LG at sites distinct from the primary afferents and so maximize their summated effect on LG. Motor neurons and premotor interneurons are excited near the initial segments of the LGs and innervate muscles for generating uropod flaring and telson flexion. Previous research has shown that spatial patterns of input are important for signal integration in LG; this map of electrical contact points will help us to understand synaptic processing in this system.
Copyright 2003 Wiley-Liss, Inc.
Similar articles
-
The retrograde spread of synaptic potentials and recruitment of presynaptic inputs.J Neurosci. 2005 Mar 23;25(12):3086-94. doi: 10.1523/JNEUROSCI.4433-04.2005. J Neurosci. 2005. PMID: 15788765 Free PMC article.
-
A lateral excitatory network in the escape circuit of crayfish.J Neurosci. 2002 Oct 15;22(20):9078-85. doi: 10.1523/JNEUROSCI.22-20-09078.2002. J Neurosci. 2002. PMID: 12388615 Free PMC article.
-
Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Dec;189(12):877-88. doi: 10.1007/s00359-003-0464-5. Epub 2003 Oct 31. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003. PMID: 14593487
-
Morphological and physiological bases of crayfish local circuit neurones.Histol Histopathol. 1994 Oct;9(4):791-805. Histol Histopathol. 1994. PMID: 7894151 Review.
-
Neural basis of a simple behavior: abdominal positioning in crayfish.Microsc Res Tech. 2003 Feb 15;60(3):346-59. doi: 10.1002/jemt.10273. Microsc Res Tech. 2003. PMID: 12539164 Review.
Cited by
-
Long-lasting potentiation of excitatory synaptic signaling to the crayfish lateral giant neuron.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Apr;191(4):347-54. doi: 10.1007/s00359-004-0589-1. Epub 2004 Dec 22. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005. PMID: 15614530
-
Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.Neurobiol Learn Mem. 2013 Oct;105:133-50. doi: 10.1016/j.nlm.2013.06.008. Epub 2013 Jun 22. Neurobiol Learn Mem. 2013. PMID: 23796633 Free PMC article. Review.
-
Excitatory connections of nonspiking interneurones in the terminal abdominal ganglion of the crayfish.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Aug;201(8):773-81. doi: 10.1007/s00359-015-1017-4. Epub 2015 Jun 3. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015. PMID: 26038269
-
The retrograde spread of synaptic potentials and recruitment of presynaptic inputs.J Neurosci. 2005 Mar 23;25(12):3086-94. doi: 10.1523/JNEUROSCI.4433-04.2005. J Neurosci. 2005. PMID: 15788765 Free PMC article.
-
Neural circuit reconfiguration by social status.J Neurosci. 2012 Apr 18;32(16):5638-45. doi: 10.1523/JNEUROSCI.5668-11.2012. J Neurosci. 2012. PMID: 22514325 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources