Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Oct;30(10):713-23.
doi: 10.1046/j.1440-1681.2003.03904.x.

What we don't know about the structure of ryanodine receptor calcium release channels

Affiliations
Review

What we don't know about the structure of ryanodine receptor calcium release channels

Angela F Dulhunty et al. Clin Exp Pharmacol Physiol. 2003 Oct.

Abstract

1. The ryanodine receptor (RyR) is the Ca2+ release channel in the sarcoplamic reticulum of skeletal and cardiac muscle and is essential for respiration and heart beat. The RyR channel releases Ca2+ from intracellular stores in a variety of other cell types, where it normally coexists with the inositiol 1,4,5-trisphosphate receptor (IP3R). The RyR and IP3R, forming a superfamily of homotetrameric ligand-gated intracellular Ca2+ channels, serve discrete functions: they can be located in independent Ca2+ stores with different activation mechanisms and can be coupled to different signalling pathways. 2. Although functional characteristics of the RyR have been investigated intensely, there remain major gaps in our knowledge about the structure of the protein, its ion-conducting pore, its ligand-binding sites and sites supporting the many protein/protein interactions that underlie the in vivo function of the channel. 3. Of particular importance are the transmembrane segments that form the membrane-spanning domain of the protein and the pore, define the conductance and selectivity of the channel and dictate the cytoplasmic and luminal domains and the overall protein structure. Hydropathy profiles predict between four and 12 transmembrane segments. One popular model shows four transmembrane segments in the C-terminal one-tenth of the protein. However, there is substantial evidence for a larger number of membrane-spanning segments located in both the C-terminal and central parts of the protein. 4. A model of the RyR pore based on the Streptomyces lividans KcsA channel structure is presented. Protein/protein interactions between the RyR and other regulatory proteins, as well as within the RyR subunit, are discussed.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources