Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999;3(4):335-44.
doi: 10.1023/a:1026546219962.

An in vitro model of angiogenesis: basic features

Affiliations

An in vitro model of angiogenesis: basic features

E T Bishop et al. Angiogenesis. 1999.

Abstract

This report describes a model of angiogenesis which develops in admixtures (co-cultures) of human umbilical vein endothelial cells (HUVEC) and human diploid fibroblasts of dermal origin from adult patients. The system does not require the addition of further growth factors other than those normally present in endothelial growth medium (EGM), nor matrix proteins, and cell growth and proliferation are allowed to occur in a standard low (2%) concentration of fetal calf serum. Angiogenesis was specifically stimulated in response to vascular endothelial growth factor (VEGF), resulting in an increased development of structures resembling a microvasculature bed. Alternatively, angiogenesis was inhibited by addition of an excess of neutralising anti-VEGF antibodies, and the anti-angiogenic drugs such as suramin. We briefly show that stimulatory and inhibitory activities can be easily and quickly quantified by image analysis. Tubule formation was confirmed by confocal and electron microscopy, and the development and disposition of these structures within the co-cultures has been analysed immunochemically to show expression of specific endothelial cell determinants, such as PECAM-1. On this and a number of other criteria, the findings validate this in vitro process as a model of in vivo angiogenesis that can be quantified to assay stimulatory and inhibitory agents, signals and drugs.

PubMed Disclaimer

LinkOut - more resources