Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus
- PMID: 1451793
- DOI: 10.1016/0014-5793(92)80216-4
Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus
Abstract
Mammalian 3 beta-hydroxysteroid dehydrogenase and plant dihydroflavonol reductases are descended from a common ancestor. Here we present evidence that Nocardia cholesterol dehydrogenase, E. coli UDP-galactose-4 epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus are homologous to 3 beta-hydroxysteroid dehydrogenase and dihydroflavonol reductase. Analysis of a multiple alignment of these sequences indicates that viral ORFs are most closely related to the mammalian 3 beta-hydroxysteroid dehydrogenases. The ancestral protein of this superfamily is likely to be one that metabolized sugar nucleotides. The sequence similarity between 3 beta-hydroxysteroid dehydrogenase and the viral ORFs is sufficient to suggest that these ORFs have an activity that is similar to 3 beta-hydroxysteroid dehydrogenase or cholesterol dehydrogenase, although the putative substrates are not yet known.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
