Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;133(10):3215-21.
doi: 10.1093/jn/133.10.3215.

Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus

Affiliations

Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus

Raghavendra Rao et al. J Nutr. 2003 Oct.

Abstract

Cognitive deficits in human infants at risk for gestationally acquired perinatal iron deficiency suggest involvement of the developing hippocampus. To understand the plausible biological explanations for hippocampal injury in perinatal iron deficiency, a neurochemical profile of 16 metabolites in the iron-deficient rat hippocampus was evaluated longitudinally by 1H NMR spectroscopy at 9.4 T. Metabolites were quantified from an 11-24 microL volume centered in the hippocampus in 18 iron-deficient and 16 iron-sufficient rats on postnatal day (PD) 7, PD10, PD14, PD21 and PD28. Perinatal iron deficiency was induced by feeding the pregnant dam an iron-deficient diet from gestational d 3 to PD7. The brain iron concentration of the iron-deficient group was 60% lower on PD7 and 19% lower on PD28 (P < 0.001 each). The concentration of 12 of the 16 measured metabolites changed over time between PD7 and PD28 in both groups (P < 0.001 each). Compared with the iron-sufficient group, phosphocreatine, glutamate, N-acetylaspartate, aspartate, gamma-aminobutyric acid, phosphorylethanolamine and taurine concentrations, and the phosphocreatine/creatine ratio were elevated in the iron-deficient group (P < 0.02 each). These neurochemical alterations suggest persistent changes in resting energy status, neurotransmission and myelination in perinatal iron deficiency. An altered neurochemical profile of the developing hippocampus may underlie some of the cognitive deficits observed in human infants with perinatal iron deficiency.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources