Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:66:141-59.
doi: 10.1093/bmb/66.1.141.

Immune system and peripheral nerves in propagation of prions to CNS

Affiliations
Free article
Review

Immune system and peripheral nerves in propagation of prions to CNS

Adriano Aguzzi et al. Br Med Bull. 2003.
Free article

Abstract

Prions are not only unique in the way they replicate. Also the sequence of events triggered by peripheral prion infection, generically termed 'peripheral pathogenesis', sets prions aside from all other known pathogens. Whereas most bacteria, parasites, and viruses trigger innate and adaptive immune responses, the mammalian immune system appears to be remarkably oblivious to prions. Transmissible spongiform encephalopathies (TSEs) do not go along with inflammatory infiltrates, and antibodies to the prion protein are not typically raised during the course of the disease. On the other hand, there is conspicuous involvement of lymphoid organs, which accumulate sizeable concentrations of the infectious agent early during disease. Moreover, various states of immune deficiency can abolish peripheral pathogenesis and prevent 'take' of infection when prions are administered to peripheral sites. Here, we critically re-visit the current evidence for an involvement of the immune system in prion diseases, and will attempt to trace the elaborate mechanisms by which prions, upon entry into the body from peripheral sites, reach the brain.

PubMed Disclaimer

Publication types

MeSH terms