Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks
- PMID: 14525021
- DOI: 10.1103/PhysRevE.68.021922
Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks
Abstract
Recent theoretical work has successfully predicted electroencephalographic spectra from physiology using a model corticothalamic system with spatially uniform parameters. The present work incorporates parameter nonuniformities into this model via the coupling they induce between spatial eigenmodes. Splitting of the spectral alpha peak, an effect seen in a small percentage of the normal population, is investigated as an illustrative special case. It is confirmed that weak splitting can arise from mode structure if the peak is sufficiently sharp, even for uniform parameters. However, it is further demonstrated that greater splitting can result from nonuniformities, and it is argued that this mechanism for split alpha is better able to account quantitatively for this effect than previously suggested alternatives of pacemakers or purely cortical resonances. On introducing nonuniformities in corticothalamic loop time delays, we find that the alpha frequency also varies as one moves from the front to the back of the head, in accord with observations, and that analogous (but less distinct) variations are seen in the beta peak. Analysis shows realistic variations of around +/-10 ms relative to the mean loop delay of approximately 80 ms can account for observed splittings of about 1 Hz. It is also suggested that subjects who display clear alpha splitting form the tail of a distribution of magnitude of cortical inhomogeneity, rather than a separate population.