Stability of negative-image equilibria in spike-timing-dependent plasticity
- PMID: 14525022
- DOI: 10.1103/PhysRevE.68.021923
Stability of negative-image equilibria in spike-timing-dependent plasticity
Abstract
We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing-dependent plasticity (STDP). The model architecture closely follows the anatomy and physiology of the electrosensory lateral line lobe (ELL) of mormyrid electric fish. The ELL uses a spike-timing-dependent learning rule to form a negative image of the reafferent signal from the fish's own electric discharge, thus improving detectability of external electric fields. We derive sufficient conditions for existence of the negative image and necessary and sufficient conditions for stability, for arbitrary postsynaptic potential functions and arbitrary learning rules. This significantly generalizes earlier investigations. We then apply the general result to several examples of biological interest, including a class of learning rules consistent with the rule observed experimentally in the mormyrid ELL.
Similar articles
-
Random walks for spike-timing-dependent plasticity.Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 1):021916. doi: 10.1103/PhysRevE.70.021916. Epub 2004 Aug 31. Phys Rev E Stat Nonlin Soft Matter Phys. 2004. PMID: 15447524
-
Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.J Neurophysiol. 2000 Oct;84(4):2035-47. doi: 10.1152/jn.2000.84.4.2035. J Neurophysiol. 2000. PMID: 11024096
-
The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli.J Neurophysiol. 2003 Aug;90(2):1193-210. doi: 10.1152/jn.00211.2003. J Neurophysiol. 2003. PMID: 12904505
-
Active control of spike-timing dependent synaptic plasticity in an electrosensory system.J Physiol Paris. 2002 Sep-Dec;96(5-6):445-9. doi: 10.1016/S0928-4257(03)00022-6. J Physiol Paris. 2002. PMID: 14692492 Review.
-
Spike timing dependent synaptic plasticity in biological systems.Biol Cybern. 2002 Dec;87(5-6):392-403. doi: 10.1007/s00422-002-0361-y. Biol Cybern. 2002. PMID: 12461629 Review.
Cited by
-
A temporal basis for predicting the sensory consequences of motor commands in an electric fish.Nat Neurosci. 2014 Mar;17(3):416-22. doi: 10.1038/nn.3650. Epub 2014 Feb 16. Nat Neurosci. 2014. PMID: 24531306 Free PMC article.
-
Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing.Front Comput Neurosci. 2010 Dec 31;4:156. doi: 10.3389/fncom.2010.00156. eCollection 2010. Front Comput Neurosci. 2010. PMID: 21228915 Free PMC article.
-
Stability of complex spike timing-dependent plasticity in cerebellar learning.J Comput Neurosci. 2007 Jun;22(3):283-96. doi: 10.1007/s10827-006-0012-8. Epub 2007 Jan 3. J Comput Neurosci. 2007. PMID: 17203402
-
Spike-timing-dependent synaptic plasticity and synaptic democracy in dendrites.J Neurophysiol. 2009 Jun;101(6):3226-34. doi: 10.1152/jn.91349.2008. Epub 2009 Apr 8. J Neurophysiol. 2009. PMID: 19357339 Free PMC article.
-
Anti-Hebbian plasticity drives sequence learning in striatum.Commun Biol. 2024 May 9;7(1):555. doi: 10.1038/s42003-024-06203-8. Commun Biol. 2024. PMID: 38724614 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Other Literature Sources