Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;17(15):2281-3.
doi: 10.1096/fj.03-0071fje. Epub 2003 Oct 2.

Divergent effects of GM-CSF and TGFbeta1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: a potential role during arteriogenesis

Affiliations

Divergent effects of GM-CSF and TGFbeta1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: a potential role during arteriogenesis

Marco M Jost et al. FASEB J. 2003 Dec.

Abstract

Granulocyte/macrophage-colony stimulating factor (GM-CSF) and transforming growth factor (TGF)beta1 induce arteriogenesis in a nonischemic model of femoral artery ligation. Moreover, clinical trials demonstrated an improved collateralization after injection of bone marrow cells. In the present study, the expression of arteriogenic factors in bone marrow-derived macrophages (BMDM) was measured to verify the potential of these cells to influence collateral artery growth. GM-CSF induced in BMDM the expression of monocyte chemoattractive protein (MCP)-1, matrix-metalloproteinase (MMP)-12, and arginase-1-the latter also showing a remarkable increase in activity. During in vivo induced arteriogenesis, the accumulation rate of macrophages around proliferating collaterals was significantly increased. We also show that MCP-1 is found to be mainly expressed in the media of the vessel wall, MMP-12 in macrophages of the adventitia, and arginase at both locations. This study provides for the first time a comprehensive analysis of GM-CSF/TGFbeta1-regulated arteriogenic factors in BMDM and supports the hypothesis that arteriogenesis is a multistage mechanism, including monocyte/macrophage adhesion and transmigration, pro-arteriogenic cytokine expression, degradation of connective tissue, and collagen synthesis regulation. Selective modulation of these mechanisms as well as cell-based therapies supplying arteriogenic factors in vivo point toward new strategies to influence collateral artery growth.

PubMed Disclaimer

MeSH terms

LinkOut - more resources