Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 Sep;30(9):2390-8.
doi: 10.1118/1.1593633.

Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier

Affiliations
Clinical Trial

Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier

Ian Chan et al. Med Phys. 2003 Sep.

Abstract

A multichannel statistical classifier for detecting prostate cancer was developed and validated by combining information from three different magnetic resonance (MR) methodologies: T2-weighted, T2-mapping, and line scan diffusion imaging (LSDI). From these MR sequences, four different sets of image intensities were obtained: T2-weighted (T2W) from T2-weighted imaging, Apparent Diffusion Coefficient (ADC) from LSDI, and proton density (PD) and T2 (T2 Map) from T2-mapping imaging. Manually segmented tumor labels from a radiologist, which were validated by biopsy results, served as tumor "ground truth." Textural features were extracted from the images using co-occurrence matrix (CM) and discrete cosine transform (DCT). Anatomical location of voxels was described by a cylindrical coordinate system. A statistical jack-knife approach was used to evaluate our classifiers. Single-channel maximum likelihood (ML) classifiers were based on 1 of the 4 basic image intensities. Our multichannel classifiers: support vector machine (SVM) and Fisher linear discriminant (FLD), utilized five different sets of derived features. Each classifier generated a summary statistical map that indicated tumor likelihood in the peripheral zone (PZ) of the prostate gland. To assess classifier accuracy, the average areas under the receiver operator characteristic (ROC) curves over all subjects were compared. Our best FLD classifier achieved an average ROC area of 0.839(+/-0.064), and our best SVM classifier achieved an average ROC area of 0.761(+/-0.043). The T2W ML classifier, our best single-channel classifier, only achieved an average ROC area of 0.599(+/-0.146). Compared to the best single-channel ML classifier, our best multichannel FLD and SVM classifiers have statistically superior ROC performance (P=0.0003 and 0.0017, respectively) from pairwise two-sided t-test. By integrating the information from multiple images and capturing the textural and anatomical features in tumor areas, summary statistical maps can potentially aid in image-guided prostate biopsy and assist in guiding and controlling delivery of localized therapy under image guidance.

PubMed Disclaimer