Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;14(8):861-74.
doi: 10.1163/156856203768366576.

Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent

Affiliations

Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent

Lie Ma et al. J Biomater Sci Polym Ed. 2003.

Abstract

A biodegradable scaffold for skin-tissue engineering was designed using collagen and chitosan, which are common materials for biomedical application. The scaffolds containing different amounts of chitosan were prepared by mixing the collagen and chitosan solutions followed by removal of the solvent using a freeze-drying method. The cross-linking treatment of these scaffolds was performed using the dehydrothermal treatment (DHT) method or glutaraldehyde (GA) to increase their biostability. The effect of the chitosan concentration and the cross-linking methods on the morphology of these scaffolds was studied by SEM. The water retention and the biodegradability in vitro of various collagen-chitosan scaffolds were investigated. Finally the biocompatibility of the collagen-chitosan (10 wt% chitosan) scaffold treated with different cross-linking methods was evaluated using a in vivo animal test. A mild inflammatory reaction could be detected in the early stages, and GA treatment can decrease the inflammatory reaction in a long-term implantation. After implantation for four weeks, all kinds of scaffolds, especially the GA-treated scaffolds (Col-GA) were filled with a large number of fibroblasts and were vascularized to a certain extent. These results suggest that the GA-treated scaffold has an increased biostability and excellent biocompatibility. It can be a potential candidate for skin-tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources