Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease
- PMID: 14536075
- DOI: 10.1016/s1097-2765(03)00272-7
Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease
Abstract
SspB dimers bind proteins bearing the ssrA-degradation tag and stimulate their degradation by the ClpXP protease. Here, E. coli SspB is shown to contain a dimeric substrate binding domain of 110-120 N-terminal residues, which binds ssrA-tagged substrates but does not stimulate their degradation. The C-terminal 40-50 residues of SspB are unstructured but are required for SspB to form substrate-delivery complexes with ClpXP. A synthetic peptide containing the 10 C-terminal residues of SspB binds ClpX, stimulates its ATPase activity, and prevents SspB-mediated delivery of GFP-ssrA for ClpXP degradation. This tripartite structure--an ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks with ClpX--allows SspB to deliver tagged substrates to ClpXP without interfering with their denaturation or degradation.
Similar articles
-
Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX.Mol Cell. 2003 Aug;12(2):373-80. doi: 10.1016/j.molcel.2003.08.012. Mol Cell. 2003. PMID: 14536077
-
Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer.Chem Biol. 2002 Nov;9(11):1237-45. doi: 10.1016/s1074-5521(02)00268-5. Chem Biol. 2002. PMID: 12445774
-
SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags.Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12136-41. doi: 10.1073/pnas.0404733101. Epub 2004 Aug 5. Proc Natl Acad Sci U S A. 2004. PMID: 15297609 Free PMC article.
-
ClpXP, an ATP-powered unfolding and protein-degradation machine.Biochim Biophys Acta. 2012 Jan;1823(1):15-28. doi: 10.1016/j.bbamcr.2011.06.007. Epub 2011 Jun 27. Biochim Biophys Acta. 2012. PMID: 21736903 Free PMC article. Review.
-
Progress and prospect of single-molecular ClpX ATPase researching system-a mini-review.Gene. 2021 Mar 30;774:145420. doi: 10.1016/j.gene.2021.145420. Epub 2021 Jan 9. Gene. 2021. PMID: 33434627 Review.
Cited by
-
Structural Basis of the Subcellular Topology Landscape of Escherichia coli.Front Microbiol. 2019 Jul 24;10:1670. doi: 10.3389/fmicb.2019.01670. eCollection 2019. Front Microbiol. 2019. PMID: 31404336 Free PMC article.
-
Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.EMBO J. 2006 Jul 26;25(14):3367-76. doi: 10.1038/sj.emboj.7601223. Epub 2006 Jun 29. EMBO J. 2006. PMID: 16810315 Free PMC article.
-
Regulated proteolysis in Gram-negative bacteria--how and when?Nat Rev Microbiol. 2011 Oct 24;9(12):839-48. doi: 10.1038/nrmicro2669. Nat Rev Microbiol. 2011. PMID: 22020261 Review.
-
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.Nat Rev Microbiol. 2009 Aug;7(8):589-99. doi: 10.1038/nrmicro2185. Nat Rev Microbiol. 2009. PMID: 19609260 Review.
-
Sculpting the proteome with AAA(+) proteases and disassembly machines.Cell. 2004 Oct 1;119(1):9-18. doi: 10.1016/j.cell.2004.09.020. Cell. 2004. PMID: 15454077 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases