Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;43(25):2591-601.
doi: 10.1016/s0042-6989(03)00465-6.

How is complex second-order motion processed?

Affiliations
Free article

How is complex second-order motion processed?

Armando Bertone et al. Vision Res. 2003 Nov.
Free article

Abstract

Converging psychophysical and electrophysiological evidence suggests that first-order (luminance-defined) complex motion types i.e., radial and rotational motion, are processed by specialized extrastriate motion mechanisms. We ask whether radial and rotational second-order (texture-defined) motion patterns are processed in a similar manner. The motion sensitivity to translating, radiating and rotating motion patterns of both first-order (luminance-modulated noise) and second-order (contrast-modulated noise) were measured for patterns presented at four different exposure durations (106, 240, 500 and 750 ms). No significant difference in motion sensitivity was found across motion type for the first-order motion class across exposure duration (i.e., from 240 to 750 ms) whereas direction-identification thresholds for radiating and rotating second-order motion were significantly greater than that of the second-order translational stimuli. Furthermore, thresholds to all second-order motion stimuli increased at a significantly faster rate with decreasing exposure duration compared to those of first-order motion. Interestingly, simple and complex second-order thresholds increased at similar rates. Taken together, the results suggest that complex second-order motion is not analyzed in a sequential manner. Rather, it seems that the same 'hard-wired' mechanisms responsible for complex first-order motion processing also mediate complex second-order motion, but not before the pre-processing (i.e., rectification) of local second-order motion signals.

PubMed Disclaimer

Publication types

LinkOut - more resources