Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;4(7):608-16.
doi: 10.1038/sj.cdd.4400282.

Prevention of rat neonatal cardiomyocyte apoptosis induced by simulated in vitro ischemia and reperfusion

Affiliations

Prevention of rat neonatal cardiomyocyte apoptosis induced by simulated in vitro ischemia and reperfusion

S R Umansky et al. Cell Death Differ. 1997 Oct.

Abstract

Apoptosis, or programmed cell death, is an active metabolic response to physiological signals or exposure to cytotoxic agents. Recent evidence has shown that the cell death response can be modified by agents presumed to be unrelated to the initial signal, but capable of interfering with the molecular mechanisms of the apoptotic pathway progression. Here we show the results of investigations on the use of a phospholipid-based pharmaceutical preparation for suppression of myocardial damage. First, we show that serum or serum/glucose deprivation, in vitro ischemia with subsequent simulated reperfusion, inhibition of protein synthesis, and treatment with ceramide, staurosporine, adriamycin, cis-platinum and menadione induce apoptotic death in a primary culture of rat neonatal cardiomyocytes. Then we demonstrate that a mixture of specific phospholipids, which has been originally purified from soy flour on the basis of its anti-apoptotic activity, prevents cardiomyocyte death induced by serum or serum/glucose deprivation, by ischemia with subsequent simulated reperfusion, and by ceramide, but not by other cytotoxic treatments. This suggests that ceramide, a lipid secondary messenger which triggers apoptosis induced by some cytotoxic agents, may be involved in the process of signaling ischemia/reperfusion induced apoptotic death of cardiomyocytes. These results further demonstrate that an active pharmaceutical preparation for the suppression of cardiomyocyte death can be formulated based upon a novel strategy of apoptosis modification.

PubMed Disclaimer

LinkOut - more resources