Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;48(10):2865-72.
doi: 10.1002/art.11250.

Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose

Affiliations

Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose

Takashi Toyoda et al. Arthritis Rheum. 2003 Oct.

Abstract

Objective: To investigate the effect of isolated hydrostatic pressure on proteoglycan metabolism in chondrocytes.

Methods: Bovine articular chondrocytes cultured in agarose gels were subjected to 5 MPa hydrostatic pressure for 4 hours in either a static or a pulsatile (1 Hz) mode, and changes in glycosaminoglycan (GAG) synthesis, hydrodynamic size, and aggregation properties of proteoglycans and aggrecan messenger RNA (mRNA) levels were determined.

Results: The application of 5 MPa static pressure caused a significant increase in GAG synthesis of 11% (P < 0.05). Column chromatography showed that this increase in GAG synthesis was associated with large proteoglycans. In addition, semiquantitative reverse transcriptase-polymerase chain reaction showed a 4-fold increase in levels of aggrecan mRNA (P < 0.01).

Conclusion: Hydrostatic pressure in isolation, which does not cause cell deformation, can affect proteoglycan metabolism in chondrocytes cultured in agarose gels, indicating an important role of hydrostatic pressure in the regulation of extracellular matrix turnover in articular cartilage.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources