Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:279:299-319.
doi: 10.1007/978-3-642-18930-2_18.

mTOR as a positive regulator of tumor cell responses to hypoxia

Affiliations
Review

mTOR as a positive regulator of tumor cell responses to hypoxia

R T Abraham. Curr Top Microbiol Immunol. 2004.

Abstract

Rapamycin is a clinically approved immunosuppressive agent that has recently shown promising antitumor activities in human patients. In contrast to many conventional chemotherapeutic agents, rapamycin displays a remarkably high level of selectivity for certain types of tumors. The pharmacological activities of rapamycin are attributable to the functional inhibition of a single target protein, termed the mammalian target of rapamycin (mTOR). Because mTOR is widely expressed in both normal and transformed cells, variations in mTOR expression levels are likely not a primary determinant of tumor sensitivity to rapamycin. However, recent studies highlighted an intriguing link between cancer cell sensitivity to rapamycin and deregulated signaling through the phosphoinositide (PI) 3-kinase pathway. These findings have prompted a search for cancer-related responses that are jointly regulated by the PI 3-kinase signaling cascade and mTOR. The oxygen-regulated transcription factor, hypoxia-induced factor (HIF)-1, has emerged as a candidate target for both of these two highly interactive signaling proteins. Here we review evidence that mTOR functions as a positive regulator of HIF-1-dependent responses to hypoxic stress in human cancer cells.

PubMed Disclaimer

MeSH terms

LinkOut - more resources