Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 Oct;17(3):651-64.
doi: 10.1016/s0926-6410(03)00189-7.

Functional anatomy of impaired selective attention and compensatory processing in autism

Affiliations
Clinical Trial

Functional anatomy of impaired selective attention and compensatory processing in autism

Matthew K Belmonte et al. Brain Res Cogn Brain Res. 2003 Oct.

Abstract

In autism, physiological indices of selective attention have been shown to be abnormal even in situations where behaviour is intact. This divergence between behaviour and physiology suggests the action of some compensatory process of attention, one which may hold clues to the aetiology of autism's characteristic cognitive phenotype. Six subjects with autism spectrum disorders and six normal control subjects were studied with functional magnetic resonance imaging while performing a bilateral visual spatial attention task. In normal subjects, the task evoked activation in a network of cortical regions including the superior parietal lobe (P<0.001), left middle temporal gyrus (P=0.002), left inferior (P<0.001) and middle (P<0.02) frontal gyri, and medial frontal gyrus (P<0.02). Autistic subjects, in contrast, showed activation in the bilateral ventral occipital cortex (P<0.03) and striate cortex (P<0.05). Within the task condition, a region-of-interest comparison of attend-left versus attend-right conditions indicated that modulation of activation in the autistic brain as a function of the lateral focus of spatial attention was abnormally decreased in the left ventral occipital cortex (P<0.03), abnormally increased in the left intraparietal sulcus (P<0.01), and abnormally variable in the superior parietal lobe (P<0.03). These results are discussed in terms of a model of autism in which a pervasive defect of neural and synaptic development produces over-connected neural systems prone to noise and crosstalk, resulting in hyper-arousal and reduced selectivity. These low-level attentional traits may be the developmental basis for higher-order cognitive styles such as weak central coherence.

PubMed Disclaimer

Publication types

LinkOut - more resources