Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;39(5):703-9.
doi: 10.1016/s0168-8278(03)00380-5.

The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis

Affiliations

The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis

Adriana E M Klomp et al. J Hepatol. 2003 Nov.

Abstract

Background/aims: Copper toxicosis (CT) in Bedlington terriers is an autosomal recessive disorder characterized by massive lysosomal copper accumulation in livers of affected dogs, and a defect in the biliary excretion of this metal. We propose that MURR1, the gene defective in canine CT, has a role in the regulation of copper excretion into bile during copper overload.

Methods: Polyclonal antibodies raised against full-length recombinant human MURR1 were used for immunoblot analysis and indirect immunofluorescence studies.

Results: Using Western blot analysis, these antibodies abundantly detected MURR1 as a 23 kDa protein in liver extracts of mice and dogs, but MURR1 was undetectable in the livers of affected Bedlington terriers. MURR1 was also detected in different tissues and cell lines; in cell lines the protein was found both in cytosol and membrane preparations. Consistent with this observation, indirect immunofluorescence staining revealed that in some cells MURR1 was associated with a vesicular compartment diffusely localized throughout the cell.

Conclusions: The genomic deletion in MURR1 results in complete absence of MURR1 protein. Based on the unanticipated subcellular localization, our results suggest a role for MURR1 in the regulation of vesicular copper sequestration during copper overload.

PubMed Disclaimer

Publication types

LinkOut - more resources