Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 7;17(16):F39-48.
doi: 10.1097/00002030-200311070-00001.

Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication

Affiliations

Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication

Miguel E Quiñones-Mateu et al. AIDS. .

Abstract

Objective: Mechanisms underlying mucosal transmission of HIV-1 are incompletely understood. We describe the anti-HIV-1 activity of human beta-defensins (hBD), small cationic molecules that provide protection at mucosal surfaces.

Methods and results: HIV-1 induced expression of hBD-2 and -3 mRNA (but not that of hBD-1) 4- to 78-fold, respectively, above baseline in normal human oral epithelial cells. HIV-1 failed to infect these cells, even after 5 days of exposure. Recombinant hBD-1 had no antiviral activity, while rhBD-2 and rhBD-3 showed concentration-dependent inhibition of HIV-1 replication without cellular toxicity. Inhibition was greater against CXCR4-tropic than against the CCR5-tropic HIV-1 isolates. hBD-2 and hBD-3 induced an irreversible effect on virion infectivity, with electron microscopy confirming binding of hBDs to viral particles. Finally, hBD-2 and -3 induced downmodulation of the HIV-1 coreceptor CXCR4 (but not CCR5) in peripheral blood mononuclear cells and T lymphocytic cells as shown by confocal microscopy and flow cytometry.

Conclusions: This study shows for the first time that HIV-1 induces beta-defensin expression in human oral epithelial cells and that beta-defensins block HIV-1 replication via a direct interaction with virions and through modulation of the CXCR4 coreceptor. These properties may be exploited as strategies for mucosal protection against HIV-1 transmission.

PubMed Disclaimer

Publication types

LinkOut - more resources