Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Nov;71(11):6298-306.
doi: 10.1128/IAI.71.11.6298-6306.2003.

Comparison of two major forms of the Shigella virulence plasmid pINV: positive selection is a major force driving the divergence

Affiliations
Comparative Study

Comparison of two major forms of the Shigella virulence plasmid pINV: positive selection is a major force driving the divergence

Ruiting Lan et al. Infect Immun. 2003 Nov.

Abstract

All Shigella and enteroinvasive Escherichia coli (EIEC) strains carry a 230-kb virulence plasmid (pINV) which is essential for their invasiveness. There are two sequence forms, pINV A and pINV B, of the plasmid (R. Lan, B. Lumb, D. Ryan, and P. R. Reeves, Infect. Immun. 69:6303-6309, 2001), and the recently sequenced pINV plasmid from Shigella flexneri serotype 5 is a pINV B form. In this study we sequenced the majority of the coding region of the pINV A form from S. flexneri serotype 6 other than insertion sequence or related sequences and compared it with the pINV B form. More than half of the genes sequenced appear to be under positive selection based on their low ratio of synonymous to nonsynonymous substitutions. This high proportion of selected differences indicates that the two pINV forms have functional differences, and comparative studies of pathogenicity in different Shigella-EIEC strains could be informative. There are also genes absent in the S. flexneri serotype 6 plasmid, including the sepA gene encoding serine protease, the major secreted protein of S. flexneri serotype 2a, and the stbAB genes, which encode one of the two partition systems found in S. flexneri serotype 5. The incompatibility of the two pINV forms appears to be due to either small differences in the mvpAT postsegregational killing system or the presence of an unknown system in pINVA.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Plot of percentage nucleotide differences between F5 and F6 pINV genes. The nonsynonymous percentages were plotted above the percentage of total variation. The genes on the x axis are in map order, allowing clustering of variation to be visualized. A bar above a group of gene names indicates that these genes are in the same inter-IS region (Table 1).

Similar articles

Cited by

References

    1. Acheson, D. W. K., and G. T. Keusch. 1995. Shigella and enteroinvasive Escherichia coli, p. 763-784. In M. J. Blaser, P. D. Smith, J. I. Ravdin, H. B. Greenberg, and R. L. Guerrant (ed.), Infections of the gastrointestinal tract. Raven Press, New York, N.Y.
    1. Beloin, C., S. McKenna, and C. J. Dorman. 2002. Molecular dissection of VirB, a key regulator of the virulence cascade of Shigella flexneri. J. Biol. Chem. 277:15333-15344. - PubMed
    1. Benjelloun-Touimi, Z., P. J. Sansonetti, and C. Parsot. 1995. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17:123-135. - PubMed
    1. Benjelloun-Touimi, Z., M. S. Tahar, C. Montecucco, P. J. Sansonetti, and C. Parsot. 1998. SepA, the 110-kDa protein secreted by Shigella flexneri: two-domain structure and proteolytic activity. Microbiology 144:1815-1822. - PubMed
    1. Blocker, A., P. Gounon, E. Larquet, K. Niebuhr, V. Cabiaux, C. Parsot, and P. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147:683-693. - PMC - PubMed

Publication types

LinkOut - more resources