Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Dec 9;1112(2):167-73.
doi: 10.1016/0005-2736(92)90388-3.

Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake

Affiliations
Comparative Study

Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake

A H Dantzig et al. Biochim Biophys Acta. .

Abstract

The human Caco-2 cell line spontaneously differentiates in culture to epithelial cells possessing intestinal enterocytic-like properties. These cells possess a proton-dependent dipeptide transport carrier that mediates the uptake of the cephalosporin antibiotic cephalexin (Dantzig, A.H. and Bergin, L. (1990) Biochim. Biophys. Acta 1027, 211-217). In the present study, the uptake of cefaclor was examined and found to be sodium-independent, proton-dependent, and energy-dependent. The initial rate of D-[3-phenyl-3H]cefaclor uptake was measured over a wide concentration range; uptake was mediated by a single saturable transport carrier with a Km of 7.6 mM and a Vmax of 7.6 nmol/min per mg protein and by a non-saturable component. Uptake was inhibited by dipeptides but not amino acids. The carrier showed a preference for the L-isomer. The effect of the presence of a 5-fold excess of other beta-lactam antibiotics was examined on the initial rates of 1 mM cefaclor and 1 mM cephalexin uptake. Uptake rates were inhibited by the orally absorbed antibiotics, cefadroxil, cefaclor, loracarbef, and cephradine and less so by the parenteral agents tested. The initial uptake rates of both D-[9-14C]cephalexin and D-[3-phenyl-3H]cefaclor were competitively inhibited by cephalexin, cefaclor, and loracarbef with Ki values of 9.2-13.2, 10.7-6.2, and 7.7-6.4 mM, respectively. Taken together, these data suggest that a single proton-dependent dipeptide transport carrier mediates the uptake of these orally absorbed antibiotics into Caco-2 cells, and provide further support for the use of Caco-2 cells as a cellular model for the study of the intestinal proton-dependent dipeptide transporter.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources