Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct-Dec;20(4):329-43.
doi: 10.1080/0968763031000138037.

Voltage-dependent ionic conductances in the human malignant astrocytoma cell line U87-MG

Affiliations
Free article

Voltage-dependent ionic conductances in the human malignant astrocytoma cell line U87-MG

Thomas Ducret et al. Mol Membr Biol. 2003 Oct-Dec.
Free article

Abstract

Although the human malignant astrocytoma cell line U87-MG has been used in numerous studies, few findings are available on the properties of its membrane ion conductances. Characterization of the ion channels expressed in these cells will make it possible to study membrane ion conductance changes when a receptor is activated by its ligand. This will help to elucidate the functional properties of these receptors and their signal-transduction pathways in pathophysiological events. This work studied the voltage-dependent ionic conductances of U87-MG cells using the Whole-Cell Recording patch-clamp technique. Six types of voltage-dependent ionic currents were identified: (i) a TEA-, 4-AP- and CTX-sensitive Ca2+-dependent K+ current, (ii) a transient K+ current inhibited by 4-AP, (iii) an inwardly rectifying K+ current blocked by Ba2+ and 4-AP, (iv) a DIDS- and SITS-sensitive Cl- current, (v) a TTX-sensitive Na+ conductance and (vi) a L-type Ca2+ conductance activated by BayK-8644 and inhibited by Ni and the L-type Ca2+ channel inhibitor, nifedipine. In addition, electrical depolarizations elicited inward currents due to voltage-independent, Ca2+-dependent K+ influx against the electrochemical gradient, probably via an ouabain-sensitive Na+-K+ pump.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources