Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Oct 20;42(40):4872-97.
doi: 10.1002/anie.200200565.

Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes

Affiliations
Review

Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes

K N Houk et al. Angew Chem Int Ed Engl. .

Abstract

The affinities of hosts-ranging from small synthetic cavitands to large proteins-for organic molecules are well documented. The average association constants for the binding of organic molecules by cyclodextrins, synthetic hosts, and albumins in water, as well as of catalytic antibodies or enzymes for substrates are 10(3.5+/-2.5) M(-1). Binding affinities are elevated to 10(8+/-2) M(-1) for the complexation of transition states and biological antigens by antibodies or inhibitors by enzymes, and to 10(16+/-4) M(-1) for transition states with enzymes. The origins of the distributions of association constants observed for the broad range of host-guest systems are explored in this Review, and typical approaches to compute and analyze host-guest binding in solution are discussed. In many classes of complexes a rough correlation is found between the binding affinity and the surface area that is buried upon complexation. Enzymes transcend this effect and achieve transition-state binding much greater than is expected from the surface areas.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources