Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;5(5):629-34.
doi: 10.1089/152308603770310293.

Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells

Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells

Steve M Nguyen et al. Antioxid Redox Signal. 2003 Oct.

Abstract

Retinal ganglion cells (RGCs) undergo apoptosis after axonal injury. Elucidation of the sequence of intracellular events proximal to caspase activation may allow development of effective neuroprotective strategies. In this study, we explored the role that reactive oxygen species may have in signaling RGC apoptosis after axonal injury. Using the fluorescent probe dihydroethidium, we were able to measure intracellular superoxide anion production. We found that axotomized RGCs exposed to oxidative stress exhibited a secondary superoxide burst. The broad-spectrum caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone did not block the burst, suggesting it is proximal to caspase activation, but it was inhibited by cycloheximide, consistent with a requirement for protein synthesis. These results are consistent with RGC axotomy inducing synthesis of one or more proteins that mediate oxidative amplification. This could be an early event in signaling of RGC apoptosis after axonal injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources