Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Nov 10;201(1):57-65.
doi: 10.1016/s0304-3835(03)00471-3.

Susceptibility to arsenic-induced hyperkeratosis and oxidative stress genes myeloperoxidase and catalase

Affiliations
Comparative Study

Susceptibility to arsenic-induced hyperkeratosis and oxidative stress genes myeloperoxidase and catalase

Habibul Ahsan et al. Cancer Lett. .

Abstract

Chronic exposure to inorganic arsenic is known to cause non-melanocytic skin and internal cancers in humans. We examined whether genetic susceptibility, as determined by single nucleotide polymorphisms -463G-->A and -262C-->T in the oxidative stress genes myeloperoxidase (MPO) and catalase (CAT), respectively, are associated with the risk of arsenic-induced hyperkeratotic skin lesions-precursors of skin cancer-in a case-control study in Bangladesh. Carriers of the susceptible MPO and CAT genotypes were at elevated risk (OR 2.1 and 95% CI 0.7-6.2 for MPO; OR 1.9 and 95% CI 0.8-4.7 for CAT) of hyperkeratosis after adjustment for arsenic exposure and other covariates. Subjects carrying the high-risk MPO genotype and with high arsenic exposure were at almost six times (OR 5.8; 95% CI 1.1-30.1) elevated risk of developing hyperkeratosis as compared to those carrying the low-risk genotype and with low arsenic exposure. Similarly, highly exposed subjects carrying the high-risk CAT genotype were at more than four times (OR 4.6; 95% CI 1.4-15.6) elevated risk of developing hyperkeratosis as compared to those carrying the low-risk genotype and with low arsenic exposure. Our findings, although based on small numbers, suggest that the oxidative stress genes MPO and CAT may influence the risk of arsenic-induced premalignant hyperkeratotic skin lesions.

PubMed Disclaimer

Publication types

LinkOut - more resources