Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 5;51(23):6761-6.
doi: 10.1021/jf0342876.

GC-ITMS determination and degradation of captan during winemaking

Affiliations

GC-ITMS determination and degradation of captan during winemaking

Alberto Angioni et al. J Agric Food Chem. .

Abstract

Captan and its metabolite tetrahydrophthalimide (THPI) were determined in grapes, must, and wine by GC-ITMS. Pesticides were extracted with acetone/petroleum ether (50:50 v/v). Because of the high selectivity of the ITMS detector, no interferent was found and cleanup was not necessary. Recoveries from fortified grapes, must, and wines ranged between 90 and 113% with a maximum coefficient of variation of 11%. Limits of quantitation were 0.01 mg/kg for both compounds. In model systems, captan and its metabolites, THPI, cis-4-cyclohexene-1,2-dicarboxylic acid, and 1,2,3,6-tetrahydrophthalamic acid, were determined by HPLC. The degradation of captan during winemaking was studied. Captan degraded in must, giving 100% THPI, and at the end of fermentation, only THPI was found in wine. The degradation of captan to THPI was due to the acidity in must and wine. This metabolite was present at low levels on grapes, and, unlike captan, it had no negative effect on the fermentative process. Model systems showed that the mechanism of disappearance of captan in grapes was due to photodegradation and codistillation.

PubMed Disclaimer

LinkOut - more resources