Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun 21;2(4):1-23.
doi: 10.1017/S1462399400001769.

Molecular targets for existing and novel immunosuppressive drugs

Affiliations

Molecular targets for existing and novel immunosuppressive drugs

S M Stepkowski. Expert Rev Mol Med. .

Abstract

Anti-neoplastic cytostatic antiproliferative agents, such as methotrexate, 6-mercaptopurine and cyclophosphamide, were originally used as immunosuppressive drugs. Although these agents induced only modest anti-rejection activity, they caused serious non-specific bone marrow suppression, impairing host resistance and increasing the incidence of infections. Unlike these non-selective agents, cyclosporine A, tacrolimus and sirolimus act more selectively on different stages of the T-lymphocyte (T-cell) and B-lymphocyte (B-cell) activation cycles; however, cyclosporine and tacrolimus are nephrotoxic, whereas sirolimus causes hypertriglyceridaemia. Thus, despite this progress, continued efforts must be made to develop and test new, potentially very selective agents. The agent 15-deoxyspergualin moderately inhibits both mitogen-stimulated T-cell proliferation and the generation of cytotoxic T lymphocytes (CTLs) but does not affect the production of interleukin 2 (IL-2). Another drug, FTY720, has a unique action to prevent rejection, by altering the homing of lymphocytes to the lymphoid compartments. The newest members of the family of antiproliferative agents, namely mycophenolate mofetil, leflunomide and brequinar, are potentially more selective than their predecessors. However, the most promising agents are produced using antisense technology. This approach involves the design of antisense oligodeoxynucleotides; these novel drugs are designed to block allograft rejection by blocking selected messenger RNA (mRNA). This review outlines the mechanisms of action, the limitations of application and the molecular or cellular targets of traditional agents, newly developed drugs and also antisense technology, which is an example of a new application of molecular medicine.

PubMed Disclaimer

LinkOut - more resources