Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;19(9):817-23.
doi: 10.1089/088922203769232610.

Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice

Affiliations

Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice

Feng Gao et al. AIDS Res Hum Retroviruses. 2003 Sep.

Abstract

Codon usage optimization of human immunodeficiency virus type 1 (HIV-1) structural genes has been shown to increase protein expression in vitro as well as in the context of DNA vaccines in vivo; however, all optimized genes reported thus far are derived from HIV-1 (group M) subtype B viruses. Here, we report the generation and biological characterization of codon usage-optimized gag, pol, env (gp160, gp140, gp120), and nef genes from a primary (nonrecombinant) HIV-1 subtype C isolate. After transfection into 293T cells, optimized subtype C genes expressed one to two orders of magnitude more protein (as determined by immunoblot densitometry) than the corresponding wild-type constructs. This effect was most pronounced for gp160, gp140, Gag, and Pol (>250-fold), but was also observed for gp120 and Nef (45- and 20-fold, respectively). Optimized gp160- and gp140-derived glycoproteins were processed, incorporated into virus particles, and mediated virus entry when expressed in trans to complement an env-minus HIV-1 provirus. Mice immunized with optimized gp140 DNA developed antibody as well as CD4+ and CD8+ T cell immune responses that were orders of magnitude greater than those of mice immunized with wild-type gp140 DNA. These data confirm and extend previous studies of codon usage optimization of HIV-1 genes to the most prevalent group M subtype. Our panel of matched optimized and wild-type subtype C genes should prove valuable for studies of protein expression and function, the generation of subtype-specific immunological reagents, and the production of DNA-based sub-unit vaccines directed against a broader spectrum of viruses.

PubMed Disclaimer

Publication types

LinkOut - more resources