Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992;31(1):32-6.
doi: 10.1007/BF00695991.

Intraperitoneal administration of the antitumour agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in the mouse: bioavailability, pharmacokinetics and toxicity after a single dose

Affiliations

Intraperitoneal administration of the antitumour agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in the mouse: bioavailability, pharmacokinetics and toxicity after a single dose

S M Evans et al. Cancer Chemother Pharmacol. 1992.

Abstract

The pharmacokinetics, tissue distribution and toxicity of the antitumour agent N-[2-(dimethylamino)-ethyl]acridine-4-carboxamide (AC) were studied after i.p. administration of [3H]-AC (410 mumol/kg) to mice. The latter is the optimal single dose for the cure of advanced Lewis lung tumours. AC was rapidly absorbed into the systemic circulation after i.p. administration, with the maximal concentration (Cmax) occurring at the first time point (5 min). There was no reduction in bioavailability as compared with previous i.v. studies, but the shape of the plasma concentration-time profile was considerably different, reflecting a 3-fold lower Cmax value (20.9 +/- 3.6 mumol/l) and a longer t1/2 value (2.7 +/- 0.3 h) as compared with that observed after i.v. administration (1.6 +/- 0.6 h). Model independent pharmacokinetic parameters after i.p. administration were: clearance (C), 17.5 l h-1 kg-1; steady-state volume of distribution (Vss), 14.1 l/kg; and mean residence time (MRT), 1.46 h. High but variable tissue uptake of AC was observed, with tissue/plasma AUC ratios being 5.7 for heart, 8.4 for brain, 18.9 for kidney and 21.0 for liver but with similar elimination t1/2 values ranging from 1.3 to 2.7 h. All radioactivity profiles in plasma and tissues were greater than the respective parent AC profiles and showed prolonged elimination t1/2 values ranging from 21 h in liver to 93 h in brain. However, tissue/plasma radioactivity AUC ratios were near unity, ranging from 0.7 to 1.57, with the exception of the gallbladder (15.6), which contained greater amounts of radioactivity. By 48 h, approximately 70% of the total dose had been eliminated, with the faecal to urinary ratio being approximately 2:1. This i.p. dose was well tolerated by mice, with sedation being the only obvious side effect. No major change was observed in blood biochemistry or haematological parameters. Comparisons of Cmax, tmax and AUC values determined for AC in brain after its i.p. and i.v. administration suggest that the reduction in acute toxicity after i.p. administration is not due to reduced exposure of the brain to AC as measured by AUC but may be associated with the lower Cmax value or the slower rate of entry of AC into the brain after i.p. administration.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Med Chem. 1987 Apr;30(4):664-9 - PubMed
    1. J Chromatogr. 1990 Jun 29;528(2):385-94 - PubMed
    1. Cancer Chemother Pharmacol. 1992;29(6):439-44 - PubMed
    1. Cancer Chemother Pharmacol. 1992;29(5):379-84 - PubMed
    1. Eur J Cancer Clin Oncol. 1989 Feb;25(2):271-7 - PubMed

Publication types

LinkOut - more resources