The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor
- PMID: 14585926
- PMCID: PMC263746
- DOI: 10.1073/pnas.1835675100
The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor
Abstract
A newly identified severe acute respiratory syndrome coronavirus (SARS-CoV), is the etiological agent responsible for the outbreak of SARS. The SARS-CoV main protease, which is a 33.8-kDa protease (also called the 3C-like protease), plays a pivotal role in mediating viral replication and transcription functions through extensive proteolytic processing of two replicase polyproteins, pp1a (486 kDa) and pp1ab (790 kDa). Here, we report the crystal structures of the SARS-CoV main protease at different pH values and in complex with a specific inhibitor. The protease structure has a fold that can be described as an augmented serine-protease, but with a Cys-His at the active site. This series of crystal structures, which is the first, to our knowledge, of any protein from the SARS virus, reveal substantial pH-dependent conformational changes, and an unexpected mode of inhibitor binding, providing a structural basis for rational drug design.
Figures




Similar articles
-
Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease.Antiviral Res. 2011 Nov;92(2):204-12. doi: 10.1016/j.antiviral.2011.08.001. Epub 2011 Aug 11. Antiviral Res. 2011. PMID: 21854807 Free PMC article.
-
Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs.Science. 2003 Jun 13;300(5626):1763-7. doi: 10.1126/science.1085658. Epub 2003 May 13. Science. 2003. PMID: 12746549
-
Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus.Biochemistry. 2007 Jul 31;46(30):8744-52. doi: 10.1021/bi0621415. Epub 2007 Jul 3. Biochemistry. 2007. PMID: 17605471
-
Drug design targeting the main protease, the Achilles' heel of coronaviruses.Curr Pharm Des. 2006;12(35):4573-90. doi: 10.2174/138161206779010369. Curr Pharm Des. 2006. PMID: 17168763 Review.
-
Activation and maturation of SARS-CoV main protease.Protein Cell. 2011 Apr;2(4):282-90. doi: 10.1007/s13238-011-1034-1. Epub 2011 Apr 28. Protein Cell. 2011. PMID: 21533772 Free PMC article. Review.
Cited by
-
In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV.Netw Model Anal Health Inform Bioinform. 2021;10(1):22. doi: 10.1007/s13721-021-00299-2. Epub 2021 Mar 25. Netw Model Anal Health Inform Bioinform. 2021. PMID: 33786291 Free PMC article.
-
Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production.Antimicrob Agents Chemother. 2020 Sep 21;64(10):e00825-20. doi: 10.1128/AAC.00825-20. Print 2020 Sep 21. Antimicrob Agents Chemother. 2020. PMID: 32759267 Free PMC article.
-
Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development.FASEB J. 2021 May;35(5):e21573. doi: 10.1096/fj.202100280RR. FASEB J. 2021. PMID: 33913206 Free PMC article. Review.
-
Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis.J Virol. 2015 May;89(9):4907-17. doi: 10.1128/JVI.00338-15. Epub 2015 Feb 18. J Virol. 2015. PMID: 25694594 Free PMC article.
-
Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus.Comput Biol Med. 2022 Dec;151(Pt A):106318. doi: 10.1016/j.compbiomed.2022.106318. Epub 2022 Nov 18. Comput Biol Med. 2022. PMID: 36423529 Free PMC article.
References
-
- Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., et al. (2003) N. Engl. J. Med. 348, 1967-1976. - PubMed
-
- Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., et al. (2003) N. Engl. J. Med. 348, 1953-1966. - PubMed
-
- Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., et al. (2003) Science 300, 1399-1404. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous