Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation
- PMID: 14586579
- DOI: 10.1007/s00253-003-1470-9
Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation
Abstract
A whole-cell biotransformation system for the conversion of d-fructose to d-mannitol was developed in Escherichia coli by constructing a recombinant oxidation/reduction cycle. First, the mdh gene, encoding mannitol dehydrogenase of Leuconostoc pseudomesenteroides ATCC 12291 (MDH), was expressed, effecting strong catalytic activity of an NADH-dependent reduction of D-fructose to D-mannitol in cell extracts of the recombinant E. coli strain. By contrast whole cells of the strain were unable to produce D-mannitol from D-fructose. To provide a source of reduction equivalents needed for d-fructose reduction, the fdh gene from Mycobacterium vaccae N10 (FDH), encoding formate dehydrogenase, was functionally co-expressed. FDH generates the NADH used for d-fructose reduction by dehydrogenation of formate to carbon dioxide. These recombinant E. coli cells were able to form D-mannitol from D-fructose in a low but significant quantity (15 mM). The introduction of a further gene, encoding the glucose facilitator protein of Zymomonas mobilis (GLF), allowed the cells to efficiently take up D-fructose, without simultaneous phosphorylation. Resting cells of this E. coli strain (3 g cell dry weight/l) produced 216 mM D-mannitol in 17 h. Due to equimolar formation of sodium hydroxide during NAD(+)-dependent oxidation of sodium formate to carbon dioxide, the pH value of the buffered biotransformation system increased by one pH unit within 2 h. Biotransformations conducted under pH control by formic-acid addition yielded d-mannitol at a concentration of 362 mM within 8 h. The yield Y(D-mannitol/D-fructose) was 84 mol%. These results show that the recombinant strain of E. coli can be utilized as an efficient biocatalyst for d-mannitol formation.
Comment in
-
Commentary to: Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.Appl Microbiol Biotechnol. 2016 Jan;100(2):1039. doi: 10.1007/s00253-015-7029-8. Appl Microbiol Biotechnol. 2016. PMID: 26685669 No abstract available.
Similar articles
-
Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.Commun Agric Appl Biol Sci. 2003;68(2 Pt A):235-40. Commun Agric Appl Biol Sci. 2003. PMID: 15296170
-
Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum.Appl Microbiol Biotechnol. 2007 Sep;76(3):545-52. doi: 10.1007/s00253-007-0987-8. Epub 2007 May 15. Appl Microbiol Biotechnol. 2007. PMID: 17503033
-
D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium.Biotechnol J. 2007 Nov;2(11):1408-16. doi: 10.1002/biot.200700055. Biotechnol J. 2007. PMID: 17619232
-
Biotechnological production of mannitol and its applications.Appl Microbiol Biotechnol. 2011 Feb;89(4):879-91. doi: 10.1007/s00253-010-2979-3. Epub 2010 Nov 10. Appl Microbiol Biotechnol. 2011. PMID: 21063702 Review.
-
Recent advances in microbial production of mannitol: utilization of low-cost substrates, strain development and regulation strategies.World J Microbiol Biotechnol. 2018 Feb 26;34(3):41. doi: 10.1007/s11274-018-2425-8. World J Microbiol Biotechnol. 2018. PMID: 29480337 Review.
Cited by
-
Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources.JACS Au. 2024 Oct 21;4(12):4546-4570. doi: 10.1021/jacsau.4c00511. eCollection 2024 Dec 23. JACS Au. 2024. PMID: 39735920 Free PMC article. Review.
-
Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions.Biotechnol Adv. 2015 Dec;33(8):1641-52. doi: 10.1016/j.biotechadv.2015.08.006. Epub 2015 Sep 3. Biotechnol Adv. 2015. PMID: 26343336 Free PMC article. Review.
-
Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production.Appl Environ Microbiol. 2006 Feb;72(2):1639-44. doi: 10.1128/AEM.72.2.1639-1644.2006. Appl Environ Microbiol. 2006. PMID: 16461720 Free PMC article.
-
Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review.Appl Biochem Biotechnol. 2022 Jun;194(6):2762-2795. doi: 10.1007/s12010-022-03836-5. Epub 2022 Feb 23. Appl Biochem Biotechnol. 2022. PMID: 35195836 Review.
-
Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl.Sci Rep. 2013;3:2643. doi: 10.1038/srep02643. Sci Rep. 2013. PMID: 24025762 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases