The critical power model for intermittent exercise
- PMID: 14586587
- DOI: 10.1007/s00421-003-0987-z
The critical power model for intermittent exercise
Abstract
This paper develops and illustrates the critical power model for intermittent work. Model theoretic development reveals that total endurance time is always a step function of one or more of the four independent variables: work interval power output ( P(w)), rest interval power output ( P(r)), work interval duration ( t(w)), and rest interval duration ( t(r)). Six endurance-trained male athletes recorded their best performances during the season in 3-, 5-, and 10-km races, and performed three different intermittent running tests to exhaustion in random order, recording their total endurance times. These data were used to illustrate the model and compare anaerobic distance capacities (alpha) and critical velocities (beta) estimated from each type of exercise. Good fits of the model to data were obtained in all cases: 0.954< R(2)<0.999. Critical velocity was found to be significantly less when estimated using an intermittent versus continuous running protocol.
Similar articles
-
Predicting intermittent running performance: critical velocity versus endurance index.Int J Sports Med. 2008 Apr;29(4):307-15. doi: 10.1055/s-2007-965357. Epub 2007 Sep 18. Int J Sports Med. 2008. PMID: 17879881
-
Critical velocity during continuous and intermittent exercises in children.Eur J Appl Physiol. 2006 Sep;98(2):132-8. doi: 10.1007/s00421-006-0253-2. Epub 2006 Aug 17. Eur J Appl Physiol. 2006. PMID: 16915406 Clinical Trial.
-
Maximal lactate steady state, respiratory compensation threshold and critical power.Eur J Appl Physiol. 2003 May;89(3-4):281-8. doi: 10.1007/s00421-002-0786-y. Epub 2003 Mar 4. Eur J Appl Physiol. 2003. PMID: 12736836 Clinical Trial.
-
Work-exhaustion time relationships and the critical power concept. A critical review.J Sports Med Phys Fitness. 1997 Jun;37(2):89-102. J Sports Med Phys Fitness. 1997. PMID: 9239986 Review.
-
The critical power and related whole-body bioenergetic models.Eur J Appl Physiol. 2006 Mar;96(4):339-54. doi: 10.1007/s00421-005-0088-2. Epub 2005 Nov 12. Eur J Appl Physiol. 2006. PMID: 16284785 Review.
Cited by
-
Can Popular High-Intensity Interval Training (HIIT) Models Lead to Impossible Training Sessions?Sports (Basel). 2022 Jan 6;10(1):10. doi: 10.3390/sports10010010. Sports (Basel). 2022. PMID: 35050975 Free PMC article.
-
Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption.Eur J Appl Physiol. 2013 Oct;113(10):2647-53. doi: 10.1007/s00421-013-2705-9. Epub 2013 Aug 15. Eur J Appl Physiol. 2013. PMID: 23949790
-
High-intensity decreasing interval training (HIDIT) increases time above 90% O2peak.Eur J Appl Physiol. 2020 Nov;120(11):2397-2405. doi: 10.1007/s00421-020-04463-w. Epub 2020 Aug 11. Eur J Appl Physiol. 2020. PMID: 32780251 Free PMC article.
-
Modeling the Benefits of Cooperative Drafting: Is There an Optimal Strategy to Facilitate a Sub-2-Hour Marathon Performance?Sports Med. 2018 Dec;48(12):2859-2867. doi: 10.1007/s40279-018-0991-4. Sports Med. 2018. PMID: 30298477
-
Maximal oxygen consumption in healthy humans: theories and facts.Eur J Appl Physiol. 2014 Oct;114(10):2007-36. doi: 10.1007/s00421-014-2911-0. Epub 2014 Jul 2. Eur J Appl Physiol. 2014. PMID: 24986693 Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials