Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Sep-Oct;18(5):259-67.
doi: 10.1002/bio.736.

Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution

Affiliations
Comparative Study

Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution

Tapan Kumar Saha et al. Luminescence. 2003 Sep-Oct.

Abstract

High-valent oxo-iron(IV) species are commonly proposed as the key intermediates in the catalytic mechanisms of iron enzymes. Water-soluble iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)porphyrin (Fe(III)TMPyP) has been used as a model of heme-enzyme to catalyse the hydrogen peroxide (H(2)O(2)) oxidation of various organic compounds. However, the mechanism of the reaction of Fe(III)TMPyP with H(2)O(2) has not been fully established. In this study, we have explored the kinetic simulation of the reaction of Fe(III)TMPyP with H(2)O(2) and of the catalytic reactivity of FeTMPyP in the luminescent peroxidation of luminol. According to the mechanism that has been established in this work, Fe(III)TMPyP is oxidized by H(2)O(2) to produce (TMPyP)(*+)Fe(IV)[double bond]O (k1 = 4.5 x 10(4)/mol/L/s) as a precursor of TMPyPFe(IV)[double bond]O. The intermediate, (TMPyP)(*+)Fe(IV)[double bond]O, represented nearly 2% of Fe(III)TMPyP but it does not accumulate in sufficient concentration to be detected because its decay rate is too fast. Kinetic simulations showed that the proposed scheme is capable of reproducing the observed time courses of FeTMPyP in various oxidation states and the decay profiles of the luminol chemiluminescence. It also shows that (TMPyP)(*+)Fe(IV)[double bond]O is 100 times more reactive than TMPyPFe(IV)[double bond]O in most of the reactions. These two species are responsible for the initial sharp and the sustained luminol emissions, respectively.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources