Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;286(2):R254-9.
doi: 10.1152/ajpregu.00502.2003. Epub 2003 Oct 30.

Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content

Affiliations
Free article

Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content

Sharon Judge et al. Am J Physiol Regul Integr Comp Physiol. 2004 Feb.
Free article

Abstract

Lifelong caloric restriction (CR) reduces the rate of mitochondrial oxidant production and the accumulation of oxidized proteins and prevents some of the age-associated decline in 20S proteasome activity. However, few studies have investigated how rapidly the beneficial effects of CR take place. We investigated whether 2 mo of CR in 6-mo-old rats would be of sufficient duration to elicit these beneficial changes. Mitochondrial oxidant production was significantly diminished in the CR rats compared with the ad libitum-fed animals. Short-term CR also caused a significant decrease in mitochondrial superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, but there were no differences in cytosolic SOD and GPX activities, whereas mitochondrial and cytosolic catalase (CAT) activity was increased with CR. However, protein carbonyl content was significantly elevated in both the mitochondrial and cytosolic fractions from CR rats. Of the three major 20S proteasome activities (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolase), the peptidylglutamyl-peptide hydrolase activity was significantly elevated in the CR animals, possibly because of the fact that there were more oxidized proteins to be degraded. Although fewer oxidants were produced in the CR animals, it is possible that the ability to scavenge oxidants was transiently suppressed because of the reduction in mitochondrial antioxidant enzyme activities, which may explain the observed increases in carbonyl content.

PubMed Disclaimer

Publication types

LinkOut - more resources