Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;18(1):173-83.
doi: 10.1210/me.2002-0386. Epub 2003 Oct 30.

Pituitary adenylate cyclase-activating peptide: a pivotal modulator of steroid-induced reproductive behavior in female rodents

Affiliations

Pituitary adenylate cyclase-activating peptide: a pivotal modulator of steroid-induced reproductive behavior in female rodents

Ede Marie Apostolakis et al. Mol Endocrinol. 2004 Jan.

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates the secretion of GnRH into the hypothalamic hypophysial portal system and sensitizes the pituitary for release of hormones that trigger ovulation. Because reproductive behavior is synchronized with GnRH release, the present study was undertaken to determine whether PACAP in the ventromedial nucleus (VMN) plays a role in receptivity. To this end, we used rat and mouse reproductive behavioral models to determine the biological relationship between PACAP and steroid receptor function in females. We provide evidence for the requirement of PACAP in the VMN for progesterone (P)-dependent sexual behavior in estrogen (E)-primed females. We clarify the biological and molecular mechanisms of PACAP activity by showing 1) that inhibition of endogenous PACAP suppresses P receptor (PR)-dependent sexual behavior facilitated by the steroid P or D1-like agonist SKF38393 and 2) that PR, steroid receptor coactivators-1 and -2, and new protein synthesis are essential for ligand independent PACAP-facilitated behavior. These findings are consistent with convergence of PACAP-mediated cellular signals on PR for genomic activation and subsequent behavioral changes. Further, we show that steroids regulate both endogenous PACAP mRNA in the VMN and immunoreactive PACAP in the medial basal hypothalamus and cerebral spinal fluid for ligand-dependent, steroid receptor-dependent receptivity. The present findings delineate a novel, steroid-dependent mechanism within the female hypothalamus by which the neuropeptide PACAP acts as a feed-forward, paracrine, and/or autocrine factor for synchronization of behavior coordinate with hypothalamic control of ovulation.

PubMed Disclaimer

Publication types