Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;3(6):335-42.
doi: 10.1038/sj.tpj.6500210.

Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes

Affiliations

Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes

P C Ho et al. Pharmacogenomics J. 2003.

Abstract

The present study investigated the effect of cytochrome P450 2C9 (CYP2C9) genetic polymorphism on the biotransformation of valproic acid (VPA) to its hepatotoxic metabolite, 4-ene-VPA, and compared that to the formation of the inactive 4-OH-VPA and 5-OH-VPA. cDNA-expressed CYP2C9(*)2 and CYP2C9(*)3 variants were less efficient than the CYP2C9(*)1 wild type in catalyzing the formation of these metabolites, as assessed by the ratio of Vmax and apparent Km (in vitro intrinsic clearance). The reduced efficiency by CYP2C9(*)2 was due to a reduced Vmax, whereas, in the case of CYP2C9(*)3, it was the result of increased apparent Km. The formation rates of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA in human liver microsomes were reduced by 29, 28, and 31%, respectively, in samples with one mutated CYP2C9 allele, and by 61, 73, and 58%, respectively, in samples with two mutated CYP2C9 alleles. Overall, the homozygote and heterozygote CYP2C9(*)2 and CYP2C9(*)3 genotypes may compromise hepatic VPA biotransformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources