Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Nov 1;74(3):378-85.
doi: 10.1002/jnr.10646.

Proteasome-mediated degradation of the C-terminus of the Alzheimer's disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein

Affiliations
Comparative Study

Proteasome-mediated degradation of the C-terminus of the Alzheimer's disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein

Janelle Nunan et al. J Neurosci Res. .

Abstract

The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. Our previous studies have shown that the proteasome can cleave the C-terminal cytoplasmic domain of APP. To identify proteasome cleavage sites in APP, two peptides homologous to the C-terminus of APP were incubated with recombinant 20S proteasome. Cleavage of the peptides was monitored by reversed phase high-performance liquid chromatography and mass spectrometry. Proteasome cleaved the APP C-terminal peptides at several sites, including a region around the sequence YENPTY that interacts with several APP-binding proteins. To examine the effect of this cleavage on Abeta production, APP-CTFbeta and mutant forms of APP-CTFbeta terminating on either side of the YENPTY sequence were expressed in CHO cells. Truncation of APP-CTFbeta on the N-terminal side of the YENPTY sequence at residue 677 significantly decreased the amount of Abeta produced, whereas truncation on the C-terminal side of residue 690 had little effect. The results suggest that proteasomal cleavage of the cytosolic domain of APP at the YENPTY sequence decreases gamma-secretase processing, and consequently inhibits Abeta production. Therefore, the proteasome-dependent trafficking pathway of APP may be a valid therapeutic target for altering Abeta production in the Alzheimer's disease brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources