Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 12;125(45):13700-13.
doi: 10.1021/ja036733b.

Free radical reactions of methionine in peptides: mechanisms relevant to beta-amyloid oxidation and Alzheimer's disease

Affiliations

Free radical reactions of methionine in peptides: mechanisms relevant to beta-amyloid oxidation and Alzheimer's disease

Christian Schöneich et al. J Am Chem Soc. .

Abstract

The pathogenesis of Alzheimer's disease is strongly associated with the formation and deposition of beta-amyloid peptide (beta AP) in the brain. This peptide contains a methionine (Met) residue in the C-terminal domain, which is important for its neurotoxicity and its propensity to reduce transition metals and to form reactive oxygen species. Theoretical studies have proposed the formation of beta AP Met radical cations as intermediates, but no experimental evidence with regard to formation and reactivity of these species in beta AP is available, largely due to the insolubility of the peptide. To define the potential reactions of Met radical cations in beta AP, we have performed time-resolved UV spectroscopic and conductivity studies with small model peptides, which show for the first time that (i) Met radical cations in peptides can be stabilized through bond formation with either the oxygen or the nitrogen atoms of adjacent peptide bonds; (ii) the formation of sulfur-oxygen bonds is kinetically preferred, but on longer time scales, sulfur-oxygen bonds convert into sulfur-nitrogen bonds in a pH-dependent manner; and (iii) ultimately, sulfur-nitrogen bonded radicals may transform intramolecularly into carbon-centered radicals located on the (alpha)C moiety of the peptide backbone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources