Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 6;279(6):3925-32.
doi: 10.1074/jbc.M303654200. Epub 2003 Nov 4.

A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gut inflammation

Affiliations
Free article

A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gut inflammation

Giovanni Monteleone et al. J Biol Chem. .
Free article

Abstract

Immunologically mediated tissue damage in the gut is associated with increased production of proinflammatory cytokines, which activate the transcription factor NF-kappaB in a variety of different cell types. The mechanisms/factors that negatively regulate NF-kappaB in the human gut and the pathways leading to the sustained NF-kappaB activation in gut inflammation remain to be identified. Pretreatment of normal human intestinal lamina propria mononuclear cells (LPMC) with transforming growth factor-beta1 (TGF-beta1) resulted in a marked suppression of TNF-alpha-induced NF-kappaB p65 accumulation in the nucleus, NF-kappaB binding DNA activity, and NF-kappaB-dependent gene activation. TGF-beta1 also increased IkappaBalpha transcripts and protein in normal LPMC. In marked contrast, treatment of LPMC from patients with inflammatory bowel disease with TGF-beta1 did not reduce TNF-induced NF-kappaB activation due to the overexpression of Smad7. Indeed inhibiting Smad7 by specific antisense oligonucleotides increased IkappaBalpha expression and reduced NF-kappaB p65 accumulation in the nucleus. This effect was due to endogenous TGF-beta1. TGF-beta1 directly stimulated IkappaBalpha promoter transcriptional activity in gut fibroblasts in vitro, and overexpression of Smad7 blocked this effect. These data show that TGF-beta1 is a negative regulator of NF-kappaB activation in the gut and that Smad7 maintains high NF-kappaB activity in gut inflammation by blocking TGF-beta1 signaling.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources