Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;59(3):476-86.
doi: 10.1111/1541-0420.00057.

Bayesian shrinkage estimation of the relative abundance of mRNA transcripts using SAGE

Affiliations

Bayesian shrinkage estimation of the relative abundance of mRNA transcripts using SAGE

Jeffrey S Morris et al. Biometrics. 2003 Sep.

Abstract

Serial analysis of gene expression (SAGE) is a technology for quantifying gene expression in biological tissue that yields count data that can be modeled by a multinomial distribution with two characteristics: skewness in the relative frequencies and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample may fail to capture a large number of expressed mRNA species present in the tissue. Empirical estimators of mRNA species' relative abundance effectively ignore these missing species, and as a result tend to overestimate the abundance of the scarce observed species comprising a vast majority of the total. We have developed a new Bayesian estimation procedure that quantifies our prior information about these characteristics, yielding a nonlinear shrinkage estimator with efficiency advantages over the MLE. Our prior is mixture of Dirichlets, whereby species are stochastically partitioned into abundant and scarce classes, each with its own multivariate prior. Simulation studies reveal our estimator has lower integrated mean squared error (IMSE) than the MLE for the SAGE scenarios simulated, and yields relative abundance profiles closer in Euclidean distance to the truth for all samples simulated. We apply our method to a SAGE library of normal colon tissue, and discuss its implications for assessing differential expression.

PubMed Disclaimer

Publication types

LinkOut - more resources