Microbial community dynamics associated with rhizosphere carbon flow
- PMID: 14602642
- PMCID: PMC262268
- DOI: 10.1128/AEM.69.11.6793-6800.2003
Microbial community dynamics associated with rhizosphere carbon flow
Abstract
Root-deposited photosynthate (rhizodeposition) is an important source of readily available carbon (C) for microbes in the vicinity of growing roots. Plant nutrient availability is controlled, to a large extent, by the cycling of this and other organic materials through the soil microbial community. Currently, our understanding of microbial community dynamics associated with rhizodeposition is limited. We used a (13)C pulse-chase labeling procedure to examine the incorporation of rhizodeposition into individual phospholipid fatty acids (PLFAs) in the bulk and rhizosphere soils of greenhouse-grown annual ryegrass (Lolium multiflorum Lam. var. Gulf). Labeling took place during a growth stage in transition between active root growth and rapid shoot growth on one set of plants (labeling period 1) and 9 days later during the rapid shoot growth stage on another set of plants (labeling period 2). Temporal differences in microbial community composition were more apparent than spatial differences, with a greater relative abundance of PLFAs from gram-positive organisms (i15:0 and a15:0) in the second labeling period. Although more abundant, gram-positive organisms appeared to be less actively utilizing rhizodeposited C in labeling period 2 than in labeling period 1. Gram-negative bacteria associated with the 16:1omega5 PLFA were more active in utilizing (13)C-labeled rhizodeposits in the second labeling period than in the first labeling period. In both labeling periods, however, the fungal PLFA 18:2omega6,9 was the most highly labeled. These results demonstrate the effectiveness of using (13)C labeling and PLFA analysis to examine the microbial dynamics associated with rhizosphere C cycling by focusing on the members actively involved.
Figures
References
-
- Arao, T. 1999. In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate. Soil Biol. Biochem. 31:1015-1020.
-
- Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. - PubMed
-
- Boschker, H. T. S., S. C. Nold, P. Wellsbury, D. Bos, W. de Graff, R. Pel, R. J. Parkes, and T. E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labeling of biomarkers. Nature 392:801-804.
-
- Bossio, D. A., and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acids profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
