Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;133(11):3603-9.
doi: 10.1093/jn/133.11.3603.

Chronic ginseng consumption attenuates age-associated oxidative stress in rats

Affiliations

Chronic ginseng consumption attenuates age-associated oxidative stress in rats

Ying Fu et al. J Nutr. 2003 Nov.

Abstract

The antioxidant properties of North American ginseng (Panax quinquefolium) were investigated in young and old rats fed a ginseng-supplemented diet for 4 mo. Female Fischer 344 rats at 4 (Y, n = 38) or 22 (O, n = 25) mo of age were randomly divided into three groups and fed either a AIN-93G formula-based control diet (C) or a diet containing 0.5 g/kg (low dose, L) or 2.5 g/kg (high dose, H) dry ginseng power for 4 mo. Oxidant generation, measured with 2'7'-dichlorofluorescin (DCFH), was significantly lowered with ginseng feeding in the homogenates of heart, soleus, and the deep portion of vastus lateralis muscle (DVL) (P < 0.05) in both Y and O rats, and the effects were dose dependent. Superoxide dismutase activity was elevated in heart and DVL of H rats, and in soleus of L rats (P < 0.05). H rats showed higher glutathione peroxidase activity in DVL and soleus muscle (P < 0.05), and elevated citrate synthase activity in the heart of both age groups and DVL of Y rats (P < 0.05). Neither the H nor L diet affected age-dependent lipid peroxidation in the heart or muscle, but protein carbonyl content was attenuated with the H diet in the heart (P < 0.05) and with both the L and H diets in DVL (P < 0.01). We conclude that ginseng supplementation can prevent age-associated increase in oxidant production and oxidative protein damage in rats. These protective effects are explained in part by elevated antioxidant enzyme activities in the various tissues.

PubMed Disclaimer

Publication types

MeSH terms