Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 13;279(7):5162-8.
doi: 10.1074/jbc.M309676200. Epub 2003 Nov 10.

Carotenoid specificity of light-harvesting complex II binding sites. Occurrence of 9-cis-violaxanthin in the neoxanthin-binding site in the parasitic angiosperm Cuscuta reflexa

Affiliations
Free article

Carotenoid specificity of light-harvesting complex II binding sites. Occurrence of 9-cis-violaxanthin in the neoxanthin-binding site in the parasitic angiosperm Cuscuta reflexa

Alison M Snyder et al. J Biol Chem. .
Free article

Abstract

The parasitic angiosperm Cuscuta reflexa has a highly unusual carotenoid composition in that it does not contain neoxanthin, an otherwise ubiquitous component of the major light-harvesting complex protein (LHCIIb) in all other higher plant species studied to date. Combined HPLC and mass spectrometric analysis has enabled us to detect in tissues of C. reflexa two new types of xanthophylls: lutein-5,6-epoxide and 9-cis-violaxanthin. We have isolated the LHCIIb complex from thylakoids and analyzed chlorophyll and carotenoid composition. The data show that the 9-cis-violaxanthin is present in amounts similar to that of neoxanthin in most plants. On the other hand, lutein-5,6-epoxide was found to be in substoichiometric quantities, suggesting a peripheral location similar to the loosely-associated all-trans-violaxanthin and also enabling suitable accessibility for the de-epoxidase (VDE). Absorption spectroscopy revealed close similarities of the excited state energies of neoxanthin and 9-cis-violaxanthin in vitro and in intact LHCIIb complex. Resonance Raman analysis clearly indicates a cis conformation of violaxanthin in the complex, confirming the pigment analysis data and proving that not only does violaxanthin replace neoxanthin as an intrinsic component of LHCIIb in C. reflexa but it also adopts the same 9-cis conformation of neoxanthin. These results suggest that the N1 binding site of LHCIIb preferentially binds 9-cis-5,6-epoxy carotenoids, which has implications for the features of this binding site and its role in the photosystem II antenna assembly and stability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources