Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 15;193(1):127-37.
doi: 10.1016/s0041-008x(03)00372-7.

Potential roles of P-gp and calcium channels in loperamide and diphenoxylate transport

Affiliations

Potential roles of P-gp and calcium channels in loperamide and diphenoxylate transport

Andrew Crowe et al. Toxicol Appl Pharmacol. .

Abstract

This study examined the accumulation and transport of two related systemic opioids used as antidiarrhoeal drugs and compared their rates of transport with known P-glycoprotein (P-gp) substrates used in our in vitro environment. Cellular uptake and efflux and transcellular transport were all determined using Caco-2 cells after exposure to loperamide or diphenoxylate, with or without a range of efflux inhibitors. Bidirectional transport studies of 5 microM loperamide showed efflux to be fivefold higher than influx (42 x 10(-6) compared to 8 x 10(-6) cm/s); however, this decreased to twofold at 10 microM and was abolished using 100 microM loperamide. An uptake pathway was also discovered when P-gp was inhibited which, in the presence of Ca(2+) channel blockers, was amplified, providing a potential mechanism for central nervous system effects to be increased upon blockage of L-type calcium channels, quite separate from any P-gp inhibition. Diphenoxylate transport, however, showed little sign of P-gp-mediated efflux. Diphenoxylate accumulated readily within cells, yet transport through cells was very low. Additionally, efflux inhibitors had little impact on transport or accumulation, suggesting that diphenoxylate was not a substrate for an efflux mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources