Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;29(3):380-95.
doi: 10.1016/s1055-7903(03)00194-5.

Evolution of mitochondrial gene content: gene loss and transfer to the nucleus

Affiliations
Review

Evolution of mitochondrial gene content: gene loss and transfer to the nucleus

Keith L Adams et al. Mol Phylogenet Evol. 2003 Dec.

Abstract

Mitochondrial gene content is highly variable across extant eukaryotes. The number of mitochondrial protein genes varies from 3 to 67, while tRNA gene content varies from 0 to 27. Moreover, these numbers exclude the many diverse lineages of non-respiring eukaryotes that lack a mitochondrial genome yet still contain a mitochondrion, albeit one often highly derived in ultrastructure and metabolic function, such as the hydrogenosome. Diversity in tRNA gene content primarily reflects differential usage of imported tRNAs of nuclear origin. In the case of protein genes, most of this diversity reflects differential degrees of functional gene transfer to the nucleus, with more minor contributions resulting from gene loss from the cell as a consequence of either substitution via a functional nuclear homolog or the cell's dispensation of the function of the gene product. The tempo and pattern of mitochondrial gene loss is highly episodic, both across the broad sweep of eukaryotes and within such well-studied groups as angiosperms. All animals, some plants, and certain other groups of eukaryotes are mired in profound stases in mitochondrial gene content, whereas other lineages have experienced relatively frequent gene loss. Loss and transfer to the nucleus of ribosomal protein and succinate dehydrogenase genes has been especially frequent, sporadic, and episodic during angiosperm evolution. Potential mechanisms for activation of transferred genes have been inferred, and intermediate stages in the process have been identified by comparative studies. Several hypotheses have been proposed for why mitochondrial genes are transferred to the nucleus, why mitochondria retain genomes, and why functional gene transfer is almost exclusively unidirectional.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources