Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;83(11):1657-67.
doi: 10.1097/01.lab.0000097190.56734.fe.

Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells

Affiliations
Free article

Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells

Kenichi Harada et al. Lab Invest. 2003 Nov.
Free article

Abstract

To clarify the innate immunity of the intrahepatic biliary tree, we examined expression of Toll-like receptors and intracellular signalings in biliary epithelial cells in response to bacterial components by using cultured biliary epithelial cells (murine biliary cells and human cholangiocarcinoma cell lines). The expression of Toll-like receptors in cultured cells was examined by reverse transcription and PCR and immunohistochemistry. Intracellular signalings after Toll-like receptors activation by lipopolysaccharide was examined by analysis of nuclear factor (NF)-kappaB activation and inhibition studies using inhibitors for NF-kappaB and mitogen-activated protein kinase and blocking antibody. The mRNAs of Toll-like receptors 2, 3, 4, and 5, and related molecules (MD-2, MyD88, and CD14) were detected, and their proteins were expressed in cultured cells. Lipopolysaccharide was shown to bind to the cell surface of cultured cells. Lipopolysaccharide treatment induced the production of TNF-alpha, and nuclear translocation of NF-kappaB and increased NF-kappaB-DNA binding in cultured cells. This induction of TNF-alpha was partially inhibited by anti-Toll-like receptor 4 antibody. The nuclear translocation and increased binding of NF-kappaB by lipopolysaccharide were blocked by addition of MG132, an inhibitor of NF-kappaB. In conclusion, lipopolysaccharide appears to form a receptor complex of CD14, Toll-like receptor 4, MD-2, and MyD88 in cultured biliary epithelial cells and seems to regulate activation of NF-kappaB and synthesis of TNF-alpha. The recognition of pathogen-associated molecular patterns using Toll-like receptors and related molecules in biliary epithelial cells, which is demonstrated in this in vitro study, may participate in an immunopathology of the intrahepatic biliary tree in vivo.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms