The effects of growth hormone deficiency and replacement on glucocorticoid exposure in hypopituitary patients on cortisone acetate and hydrocortisone replacement
- PMID: 14616886
- DOI: 10.1046/j.1365-2265.2003.01894.x
The effects of growth hormone deficiency and replacement on glucocorticoid exposure in hypopituitary patients on cortisone acetate and hydrocortisone replacement
Abstract
Objective: 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta HSD1) converts inactive cortisone to active cortisol. 11 beta HSD1 activity is increased in GH deficiency and inhibited by GH and IGF-I in acromegaly. However it is not known whether these changes in cortisol metabolism exert significant effects during hydrocortisone therapy, and the effect has not been studied in patients taking cortisone acetate. We have studied the effect of GH induced 11 beta HSD1 inhibition in hypopituitary adults with severe GH deficiency to determine whether this inhibition has a different magnitude of effect when patients are taking different forms of glucocorticoid replacement therapy.
Design, patients and measurements: We have taken the ratio of 11-hydroxy/11-oxo cortisol metabolites (Fm/Em), an established measure of net 11 beta HSD activity to reflect the likely balance of cortisol to cortisone exposure in tissues expressing 11 beta HSD1, principally the liver and adipose tissue. We recruited 10 hypopituitary adults all on established glucocorticoid replacement therapy, but who were not receiving GH. Patients were treated with their standard hydrocortisone therapy for one week and an equivalent dose of cortisone acetate in its place for one week in random order. Serial serum cortisol assessments and urine steroid profiles were performed on each treatment. All patients were then established on GH therapy for at least three months before the two-week cycle was repeated. Fm/Em was also measured in a control population (20F, 20M).
Results: Prior to GH, the ratio Fm/Em was greater with hydrocortisone compared with cortisone acetate replacement (1.17 +/- 0.28 and 0.52 +/- 0.09 respectively, P < 0.001) or with normal subjects (normal males: 0.81 +/- 0.24, females 0.66 +/- 0.14). Following GH replacement Fm/Em fell in patients on hydrocortisone and cortisone acetate (Pre-GH: 0.84 +/- 0.40, Post-GH: 0.70 +/- 0.34, P < 0.05) confirming the inhibition of 11 beta HSD1 by GH/IGF-I. Conversely, the ratio of urinary free cortisol/cortisone did not change indicating unchanged 11 beta HSD2 activity. Mean circulating cortisol also fell in all subjects after GH. This effect was greater during cortisone acetate treatment (-18.7%, P < 0.0001), than during hydrocortisone replacement (-10.9%, P < 0.05).
Conclusions: Our data suggest that tissue exposure to glucocorticoid is supra-physiological in hypopituitary patients with untreated GH deficiency taking hydrocortisone replacement therapy. This situation is ameliorated by GH replacement therapy. However, local and circulating cortisol concentrations are more vulnerable to the inhibitory effect of GH on 11 beta HSD1 in patients taking cortisone acetate, such that serum cortisol assessments should be made in patients taking cortisone acetate after GH therapy to ensure that glucocorticoid replacement remains adequate.
Similar articles
-
The effect of growth hormone replacement therapy on cortisol-cortisone interconversion in hypopituitary adults: evidence for growth hormone modulation of extrarenal 11 beta-hydroxysteroid dehydrogenase activity.Clin Endocrinol (Oxf). 1998 Feb;48(2):153-62. doi: 10.1046/j.1365-2265.1998.3641180.x. Clin Endocrinol (Oxf). 1998. PMID: 9579226
-
Growth hormone, insulin-like growth factor-I and the cortisol-cortisone shuttle.Horm Res. 2001;56 Suppl 1:1-6. doi: 10.1159/000048126. Horm Res. 2001. PMID: 11786677 Review.
-
Modulation of cortisol metabolism by low-dose growth hormone replacement in elderly hypopituitary patients.J Clin Endocrinol Metab. 2000 Apr;85(4):1727-30. doi: 10.1210/jcem.85.4.6505. J Clin Endocrinol Metab. 2000. PMID: 10770221
-
Growth hormone replacement inhibits renal and hepatic 11 beta-hydroxysteroid dehydrogenases in ACTH-deficient patients.Clin Endocrinol (Oxf). 1998 Aug;49(2):257-63. doi: 10.1046/j.1365-2265.1998.00575.x. Clin Endocrinol (Oxf). 1998. PMID: 9828916 Clinical Trial.
-
Modulation of glucocorticoid metabolism by the growth hormone - IGF-1 axis.Clin Endocrinol (Oxf). 2007 Apr;66(4):459-65. doi: 10.1111/j.1365-2265.2007.02763.x. Clin Endocrinol (Oxf). 2007. PMID: 17371460 Review.
Cited by
-
Glucocorticoids and the regulation of growth hormone secretion.Nat Rev Endocrinol. 2013 May;9(5):265-76. doi: 10.1038/nrendo.2013.5. Epub 2013 Feb 5. Nat Rev Endocrinol. 2013. PMID: 23381030 Review.
-
In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis.BMC Microbiol. 2010 Apr 8;10:105. doi: 10.1186/1471-2180-10-105. BMC Microbiol. 2010. PMID: 20377900 Free PMC article.
-
Diagnosis and treatment of ACTH deficiency.Rev Endocr Metab Disord. 2005 Jan;6(1):47-54. doi: 10.1007/s11154-005-5224-0. Rev Endocr Metab Disord. 2005. PMID: 15711914 Review. No abstract available.
-
Anterior pituitary hormone replacement therapy--a clinical review.Pituitary. 2007;10(1):1-15. doi: 10.1007/s11102-007-0001-6. Pituitary. 2007. PMID: 17265188 Review.
-
Comparison of different regimens of glucocorticoid replacement therapy in patients with hypoadrenalism.J Endocrinol Invest. 2005 Jul-Aug;28(7):632-7. doi: 10.1007/BF03347262. J Endocrinol Invest. 2005. PMID: 16218046
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical