Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;29(6):1119-40.
doi: 10.1037/0278-7393.29.6.1119.

From covariation to causation: a test of the assumption of causal power

Affiliations

From covariation to causation: a test of the assumption of causal power

Marc J Buehner et al. J Exp Psychol Learn Mem Cogn. 2003 Nov.

Abstract

How humans infer causation from covariation has been the subject of a vigorous debate, most recently between the computational causal power account (P. W. Cheng, 1997) and associative learning theorists (e.g., K. Lober & D. R. Shanks, 2000). Whereas most researchers in the subject area agree that causal power as computed by the power PC theory offers a normative account of the inductive process. Lober and Shanks, among others, have questioned the empirical validity of the theory. This article offers a full report and additional analyses of the original study featured in Lober and Shanks's critique (M. J. Buehner & P. W. Cheng, 1997) and reports tests of Lober and Shanks's and other explanations of the pattern of causal judgments. Deviations from normativity, including the outcome-density bias, were found to be misperceptions of the input or other artifacts of the experimental procedures rather than inherent to the process of causal induction.

PubMed Disclaimer

Publication types

LinkOut - more resources