Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;18(9):2498-504.
doi: 10.1046/j.1460-9568.2003.02980.x.

Direct evidence for the up-regulation of spinal micro-opioid receptor function after repeated stimulation of kappa-opioid receptors in the mouse

Affiliations

Direct evidence for the up-regulation of spinal micro-opioid receptor function after repeated stimulation of kappa-opioid receptors in the mouse

Minoru Narita et al. Eur J Neurosci. 2003 Nov.

Abstract

The present study was designed to investigate the possible change in spinal micro -opioid receptor function after repeated administration of a selective kappa-opioid receptor agonist (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl]-benzeneacetamide hydrochloride [(-)U-50,488H] in the ICR mouse. A single s.c. or i.t. injection of (-)U-50,488H produced a dose-dependent antinociception. Repeated s.c. or i.t. administration of (-)U-50,488H resulted in the development of tolerance to (-)U-50,488H-induced antinociception. Under these conditions, we demonstrated here that repeated s.c. injection of (-)U-50,488H significantly enhanced the antinociceptive effect induced by the i.t. administration of a selective micro -opioid receptor agonist [d-Ala2,N-Me-Phe4,Gly5-ol] enkephalin (DAMGO). Using the guanosine-5'-o-(3-[35S]thio) triphosphate ([35S]GTPgammaS) binding assay, we found that (-)U-50,488H was able to produce a dose-dependent increase in [35S]GTPgammaS binding to membranes of the mouse spinal cord. Repeated administration of (-)U-50,488H caused a significant reduction in the (-)U-50,488H-stimulated [35S]GTPgammaS binding in this region, whereas repeated treatment with (-)U-50,488H exhibited an increase in the DAMGO-stimulated [35S]GTPgammaS binding in membranes of the spinal cord. Using a receptor binding assay, repeated treatment with (-)U-50,488H significantly increased the density of [3H]DAMGO binding sites in membranes of the mouse spinal cord. In contrast, the expression of micro -opioid receptor was not affected after repeated treatment with (-)U-50,488H. These results suggest that repeated stimulation of kappa-opioid receptors leads to the up-regulation of micro -opioid receptor functions in the spinal cord, which may be associated with an increase in the number of functional micro -opioid receptors in the mouse spinal cord.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

Substances

LinkOut - more resources