Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec;126(2):211-23.
doi: 10.1016/j.chemphyslip.2003.08.001.

Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers

Affiliations
Comparative Study

Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers

Jonathan N Sachs et al. Chem Phys Lipids. 2003 Dec.

Abstract

Reconstruction and interpretation of lipid bilayer structure from X-ray scattering often rely on assumptions regarding the molecular distributions across the bilayer. It is usually assumed that changes in head-head spacings across the bilayer, as measured from electron density profiles, equal the variations in hydrocarbon thicknesses. One can then determine the structure of a bilayer by comparison to the known structure of a lipid with the same headgroup. Here we examine this procedure using simulated electron density profiles for the benchmark lipids DMPC and DPPC. We compare simulation and experiment in both real and Fourier space to address two main aspects: (i) the measurement of head-head spacings from relative electron density profiles, and (ii) the determination of the absolute scale for these profiles. We find supporting evidence for the experimental procedure, thus explaining the robustness and consistency of experimental structural results derived from electron density profiles. However, we also expose potential pitfalls in the Fourier reconstruction that are due to the limited number of scattering peaks. Volumetric analysis of simulated bilayers allows us to propose an improved, yet simple method for scale determination. In this way we are able to remove some of the restrictions imposed by limited scattering data in constructing reliable electron density profiles.

PubMed Disclaimer

Publication types

MeSH terms

Substances